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SUMMARY

A three-dimensional baroclinic numerical model has been developed to compute water levels and water
particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport
and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations
are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The
transport model component consists of the pollutant transport model and the water temperature and
salinity transport models. In this component, the three-dimensional convective diffusion equations are
solved for each of the three quantities. In the turbulence model, a two-equation k–e formulation is solved
to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable
vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky
algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite
element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite
element shape functions are used. The governing equations are solved implicitly in the Cartesian
co-ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid
clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes
can be considered. The developed numerical model predictions are compared with the analytical solutions
of the steady wind driven circulatory flow in a closed basin and of the uni-nodal standing oscillation.
Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent
flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of
marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A number of papers have appeared in the literature reporting numerical modelling studies of
turbulent transport processes in the coastal water bodies, like bays, lagoons, estuaries, etc.
Three-dimensional models extended the common two-dimensional vertically averaged models
to include the vertical structure. The physical processes in coastal water bodies are generally
complicated, therefore, many approximations have had to be made in several of these
three-dimensional models, including: advection, bottom friction, density, turbulence models,
co-ordinate systems, treatment of horizontal and vertical variables and treatment of flooding
and drying [1]. Different levels of accuracy in these approximations and in numerical solution
schemes result in different levels of accuracy in the model predictions [1].

Most of the three-dimensional models have used finite difference grids in the horizontal
plane, but mainly different methods in the vertical. In layered models, the governing differen-
tial equations are based on the layer-averaged three-dimensional equations of continuity and
momentum conservation [1]. In grid box models, three-dimensional equations of motion are
solved by using a fixed finite difference grid in the vertical, through which the fluid is free to
move [2,3]. Davies and Stephens [4] compared the finite difference and Galerkin methods as
applied to the solution of the hydrodynamic equations. The accuracy and computational
efficiency, in terms of both computer time and memory requirements, of using either the
Galerkin method or the finite difference method through the vertical were considered.
Calculations showed that, the Galerkin method had superior accuracy over the grid box
method. If the finite difference grid is fixed in the vertical, the number of vertical grid boxes
increases as depth increases, but reduces in the shallower water depths. Unfortunately, this has
the effect of reducing the vertical resolution in the shallow water areas, where high vertical
shears occur. This problem of reduced vertical resolution in the shallow regions can be
overcome by transforming the hydrodynamic equations into sigma co-ordinates, and then
applying a finite difference grid in the vertical, i.e. a sigma co-ordinate box model. This way,
a constant number of grid boxes is used in the vertical at each horizontal grid point [5,6]. In
transforming the curved physical region to the computational domain, the governing equations
are also transformed resulting in more complex equations. Stansby [7], used a three-dimen-
sional, semi implicit finite volume scheme for tide-induced shallow water flow with the
hydrostatic pressure assumption, using the sigma co-ordinate system and incorporating a
standard k–e turbulence transport model. Evaluation of horizontal gradients in the sigma
co-ordinate system required high-order derivatives, which caused spurious flows, and this was
avoided by obtaining these gradients in real space. Since the sigma co-ordinate transformation
is non-conformal, the transformed governing equations become very complex, with some of
the additional terms involving cross derivatives. When large bathymetric irregularities exist, the
layer thickness considerably increases in deep water regions, whereas decreases in shallow
water areas. Huang and Spaulding [8] used an algebraic transformation within the s-co-
ordinate transformation to achieve higher resolution.

In the developed model, the depth-following co-ordinate system is applied [9,10]. The
solution method is a composite finite difference–finite element method. The governing
equations, written in the Cartesian co-ordinates, are solved by the Galerkin weighted residual
method in the vertical plane and by finite difference approximations in the horizontal plane,
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without any co-ordinate transformation. When the integrals of the functions are to be
performed, all the horizontal gradient terms are corrected by considering the horizontal
gradients of the basis functions. The water depths are divided into the same number of layers
following the bottom topography. Therefore, the vertical layer thickness is proportional to the
local water depth. Higher resolution can be achieved either by increasing the number of layers,
or by grid clustering. Grids can be concentrated near the surface layer, near the bottom layer
or around any specified water depth by grid clustering. The governing equations are solved
implicitly. The finite difference approximations can handle the variations in the horizontal
mesh sizes. The horizontal mesh size Dx in the x-co-ordinate is orthogonal to the horizontal
mesh size Dy in the y-co-ordinate. The horizontal mesh sizes Dx and Dy can be different from
each other. Furthermore, Dx can vary along the x co-ordinate and Dy can vary along the y
co-ordinate. The volume of water in a typical shallow coastal water body such as a lagoon,
may show seasonal variations, causing some water areas in the system to dry out or vice versa.
Therefore, the boundaries of the coastal area need to be defined as movable boundaries. In the
model developed, the flooding and drying processes can also be considered in the treatment of
shoreline boundaries. The model predictions were verified by using several experimental and
analytical results published in the literature and its successful use for a variety of real life cases
was demonstrated [11].

2. THEORETICAL CONSIDERATIONS

Three-dimensional mathematical models are necessary to simulate wind driven circulations and
density currents that occur in coastal waters, which are stratified by salinity and temperature
layers resulting in significant vertical and lateral density gradients. The developed three-
dimensional mathematical model is capable of computing the water levels and water particle
velocity distributions in three principal directions by solving the Navier–Stokes equations.
Only two simplifying approximations are used in the model. First, it is assumed that the weight
of the fluid balances the pressure, i.e. the hydrostatic pressure distribution assumption; and
second, the density differences are neglected unless the differences are multiplied by the
gravity, i.e. the Boussinesq approximation. Since the horizontal extent of the coastal sea is
much larger than the vertical extent, the vertical component of the motion is much weaker
than the horizontal velocity [12]. If the flow is predominantly horizontal, and the vertical
acceleration is small compared with the gravity acceleration, the equation of motion can be
reduced to the simple hydrostatic law. Although the vertical acceleration is assumed to be
negligible, the vertical velocity can be calculated from the equation of continuity.

The governing hydrodynamic equations in the three-dimensional Cartesian co-ordinate
system are as follows:
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where x, y are horizontal co-ordinates; z is the vertical co-ordinate; t is time; u, 6, w are
velocity components in x-, y-, z-directions at any grid locations in space; 6x, 6y, 6z are eddy
viscosity coefficients in x-, y- and z-directions respectively; f is the Corriolis coefficient;
r(x, y, z, t) is the in situ water density; r0 is the reference density; g is gravitational
acceleration; p is pressure.

The numerical model can simulate the flows induced by the density gradients. The density
of sea water is a function of its salinity and its temperature. The temperature and salinity
variations are calculated by solving the three-dimensional convection–diffusion equation
which is written as:
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where Dx, Dy and Dz are turbulent diffusion coefficients in x-, y- and z-directions respectively;
Q is temperature (T) or salinity (S).

The conservation equation for a pollutant constituent is:
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where C is the pollutant concentration; kp is the decay rate of the pollutant; Dx, Dy and Dz are
turbulent diffusion coefficients in x-, y- and z-directions respectively.

Integrating the continuity equation over the depth and using the kinematic condition at the
free surface leads to the following depth integrated continuity equation:
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where h(x, y) is the water depth measured from the undisturbed water surface. The total water
depth is H(x, y, t)=h(x, y)+h(x, y, t).

The horizontal pressure gradient terms are:
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where rs is the density at the surface. A similar expression can be written for (p/(y.
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The two-equation k–e turbulence model is used for the turbulence modelling. The model
equations for the kinetic energy and its dissipation rate are:
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where k is kinetic energy; e is the rate of dissipation of kinetic energy; 6z is the vertical eddy
viscosity; Dx, Dy are horizontal diffusion coefficients in x- and y-directions respectively; P is
the stress production of the kinetic energy; B is the buoyancy production of the kinetic energy
which is defined by:
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where Pr is the turbulent Prandtl or Schmidt number. Experiments have shown that, the
turbulent Prandtl or Schmidt number, varies slightly in a flow and from one flow to the other
[13]. Therefore, it is considered as a constant, Pr=0.7.

The stress production of the kinetic energy is defined by:
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where 6h is the horizontal eddy viscosity and u and 6 are the horizontal water particle velocities
in x- and y-directions respectively.

The vertical eddy viscosity is calculated by:

6z=Cm

k2

e
(13)

The following universal empirical constants are used [13]: Cm=0.09, se=1.3, C1e=1.44,
C2e=1.92, C3e=1 if B\0 (unstable stratification) and C3e=0.2 if BB0 (stable
stratification).

The standard k–e model assumes the local isotropy of the turbulence, where horizontal eddy
viscosity is equal to the vertical eddy viscosity. If the horizontal motion has an intensity and
length scale greater than the vertical motion, as in shallow water bodies, the standard single
length scale, k–e turbulence model underestimates the effective horizontal eddy viscosities. To
account for large scale turbulence generated by the horizontal shear, horizontal eddy viscosity
can be simulated by the Smagorinsky algebraic subgrid scale turbulence model [14]:
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In the case of stratified flows, as observed from the experimental results of Huq and Stretch
[15], the influence of stratification on turbulence in the horizontal direction is negligible.
Hence, the horizontal eddy diffusivities are approximately equal to the horizontal eddy
viscosities. Whereas, the vertical diffusivity, Dz, is expressed as:

Dz=
6z
Pr

(15)

where 6z is the vertical eddy viscosity coefficient.
There are four types of boundaries, namely; free surface, sea bed, open sea and coastal land

boundaries.

2.1. Free surface

The wind induced shear stress at the free surface is expressed as:

[twx, twy ]=raCd[uw, 6w]
uw
2 +6w

2 (16)

where twx, twy are the wind stress components and uw and 6w are the wind velocity components
(m/s) in x- and y-directions respectively; ra is the air density and Cd is the drag coefficient of
air.

In the literature, several formulations exist for the wind drag coefficient, ranging from a
constant value for all wind speeds to complicated formulae that take into account the wind
speed and direction and the roughness of the sea surface (wave height). The following
formulation of drag coefficient proposed by Large and Pond [16] and mostly applied in the
three-dimensional models, is used in the present model:

Cd=
! 1.2 � 10−3 WB11 m/s

(0.49+0.065W) � 10−3 11 m/s5WB25 m/s
(17)

where W is the wind velocity in m/s.
The wind induced shear stress at the surface results in a water velocity gradient below the

surface:
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At the free surface, the pollutant and salt fluxes are taken as zero (no atmospheric deposition),
whereas the heat flux is:
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Dz
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where K is the surface heat transfer coefficient; r is the water density; Cp is the specific heat
of water; Ts is the surface water temperature; Te is the equilibrium temperature.

The boundary conditions for the kinetic energy and its rate of dissipation also depend on the
wind shear. When there exists a wind shear [13]:
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where u
*s is the surface shear velocity; cm is the universal empirical constant, 0.09; Dzs is the

distance from the surface to the first grid point below; k is the Karman constant, which is
k=0.42; H is the total water depth.

2.2. Sea bed

At the sea bed, the bottom shear stress is determined by matching velocities with the
logarithmic law of the wall:

tbx=
�
6z
(u
(z
n

b

=r0Cfub
ub
2 +6b

2; tby=
�
6z
(6

(z
�

b

=r0Cf6b
ub
2 +6b

2 (22)

where tbx, tby are the bottom shear stress components and ub, 6b are the horizontal velocity
components at the grid point nearest the bottom; r0 is the mean water density, and Cf is the
empirical coefficient for bottom friction. If sufficient resolution near the bottom boundary is
provided, Cf can be estimated from the logarithmic law of the wall:

Cf=
�1

k
ln
�Dzb
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(23)

where Dzb is the distance from the bottom to the first grid point above; z0 is a parameter which
is dependent on the local bottom roughness and can be taken as 1 cm.

When the bottom boundary layer is not sufficiently resolved, Cf is specified as a constant
(typically in the range 0.002–0.003). The wall region occupies the range of 30Bz+B100,
where z+ is calculated by using the following expression: z+ =Dzbu*b/6, in which u*b is the
bed friction velocity. In the vertical discretization, the first vertical mesh point should lie within
this region.

The kinematic boundary condition at the sea bed is:
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The bottom turbulent kinetic energy kb and dissipation eb, are determined from the
following relations:
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At the sea bottom, the gradients of temperature, salinity and pollutant are taken as zero,
indicating that there are no advective and diffusive fluxes across the sea bed.

2.3. Coastal land boundary

The volume of water in a coastal system, like lagoons, may show seasonal variations, causing
some water areas in the system to dry out or land areas to be flooded. Therefore, the water
boundaries (e.g. the shoreline) should be handled in a way to simulate the flooding and drying
processes. Once the free surface and the new water velocities are computed over the whole
computational domain, the total water depth and vertical grid spacings have to be updated
before proceeding to the next time step. The water surface slope is calculated at each time step.
If the water surface slope is positive, using this slope the water surface is extended until it
intersects the coastal land boundary. The horizontal distance travelled on the land should be
a value which is at least one-fifth of the horizontal space increment to be accepted as a
movement. Then, the horizontal space increment is modified and the water depth in the middle
of the grid is calculated. A negative value for the total water depth H, has no physical
meaning, therefore the discrete total depths Hi,j are expressed as:

Hi, j=max(0, hi, j+hi, j) (26)

where h(x, y) is the water depth measured from the undisturbed water surface; h(x, y, t) is
water surface elevation.

The water depth at the middle of each grid cell is compared with Lb, which is a length scale
of bed roughness. When the calculated water depth is less than Lb or zero, that cell is a dry
cell which may be flooded again if the total water depth becomes positive at a later time. In
a dry cell, the velocity components u or 6 across the side of the grid cell are forced to vanish
in order not to permit flow across the grid cell sides. The shoreline boundary, which may vary
with time as the consequence of flooding and drying processes, is defined by the condition of
no mass flux in the normal direction. Across the shoreline, the normal gradients of tempera-
ture, salinity and pollutant are also taken as zero (i.e. no advective and diffusive fluxes across
the shoreline boundary). At the inflow/outflow locations along the land boundary (shoreline),
k and e can be described from fully developed channel flow data [17] as:

k=0.004ud
2; e=cm

3/4 k3/2

0.09b
(27)

where ud is the inflow velocity and b is inflow inlet width.
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2.4. Open sea boundary

The open sea boundary is the lateral boundary where the open sea can flow in or out of the
coastal water body. At the open sea boundary, when there is no tidal motion, velocities normal
to the boundary are computed in the middle of the cell where the water depth is known and
the horizontal gradient terms are treated accordingly (Appendix A). For tidal flows, the
following equations are used at the open sea boundary:
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where Tw and Lw are tidal period and wave length respectively; H is the total water depth; Vn

is the depth averaged velocity normal to the boundary; Dn is the horizontal grid distance
normal to the lateral boundary; a is the tidal amplitude.

3. NUMERICAL SOLUTION SCHEME

Equations are solved numerically by approximating the horizontal gradient terms using a
staggered finite difference scheme. In the vertical plane however, the Galerkin method of finite
elements is utilized. Water depths are divided into the same number of layers following the
bottom topography. At all nodal points, the ratio of the length (thickness) of each element
(layer) to the total depth is constant. By following the finite element approach, the values of
velocities u, 6, w ; the turbulent eddy viscosities 6x, 6y, 6z ; the temperature, T ; the salinity S ; the
pollutant concentration C ; the turbulent diffusivities Dx, Dy, Dz ; the kinetic energy k ; the rate
of dissipation of kinetic energy e ; the pressure p, at any point over the flow depth are written
in terms of the discrete values of these variables at the vertical nodal points by using linear
shape functions.

G0 =N1G1
k+N2G2

k (30)

N1=
z2−z

lk
; N2=

z−z1

lk
; lk=z2−z1 (31)

where G0 is the approximation or shape function, G is any of the variables, k is the element
number, N1 and N2 are the interpolation functions, lk is the length of the kth element, z1 and
z2 are the beginning and end elevations of the element k, and z is the transformed variable that
changes from z1 to z2 in an element.
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The approximate expressions for variables are substituted into the governing equations and
the residual errors (R), are minimized by using the Galerkin procedure [18,19]. To increase the
vertical resolution, wherever necessary, grid clustering can be applied in the vertical plane [20].
Grids can be concentrated near the bottom, surface, or intermediate layers.

After the application of the Galerkin method, any derivative terms with respect to horizontal
co-ordinates appearing in the equations are replaced by their central finite difference approxi-
mations. The mesh size may be varied in the horizontal plane. The local element matrices for
all elements on a vertical line are grouped together to form the global matrix equation for the
unknown nodal time derivatives of the variables at a grid point on the horizontal plane. The
sea bed and sea surface boundary conditions are taken into account, while building up the
global matrices over the water depth [11]. The derivation of matrix elements are given in
Appendix B.

The system of non-linear equations are solved by the Crank–Nicholson method, which has
second-order accuracy in time. To provide this accuracy, difference approximations are
developed at the midpoint of the time step. The temporal first derivative is approximated at
(t+1/2) and all other variables and derivatives at this time are determined by averaging the
difference approximations at the beginning (t) and at the end (t+1) of the time increment.
Resultant set of implicit equations are solved by an iterative method, which is controlled by
underrelaxation. Underrelaxation is typically employed to make a non-convergent system
convergent or to hasten convergence by dampening out the oscillations.

3.1. Handling of the continuity equation

After the estimation of horizontal velocities, the vertical velocities, w, are calculated from the
continuity equation, at each time step. The approximate expressions for horizontal velocities u
and 6, are substituted into the continuity equation:

(ũ
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Then, the residual error is minimized by the Galerkin method. Since the horizontal velocities
are known, the equation to calculate the vertical velocity becomes as:
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where k=1, 2 . . . , m represents the layer number and lk is the length of the element k.
Therefore, at each point, vertical velocities are computed, starting from the bottom layer to

the surface layer, in order to satisfy the continuity equation.
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4. APPLICATION OF THE MODEL

4.1. Wind dri6en flow

The comparison of model predictions with an analytical solution is performed for a steady
wind driven circulatory flow in a closed basin with a flat bed and with linearized bottom
friction. The advection, coriolis and the horizontal diffusion terms are neglected. The momen-
tum equation requires a balance among the gravitational force due to the surface elevation
gradient, the vertical diffusion of momentum, the surface wind drag and the bottom friction
force. The analytic solution for a constant vertical eddy viscosity and linearized bottom friction
is given as [8]:

u=
g

66z

(h

(x
(3z2−H2)+

tw

2r6z
(H+2z) (34)

(h

(x
=

3
2

tw

rgH
(26z+ufH)
(36z+ufH)

(35)

where u is the horizontal velocity, uf is the linearized bottom friction coefficient, h is the
surface elevation, 6z is the vertical eddy viscosity, g is the gravitational acceleration, tw is the
wind stress, H is the total water depth, r is the water density, z is the vertical co-ordinate
which is equal to zero at the sea surface, whereas it is equal to (−H) at the sea bottom.

In the numerical simulation, the following parameters are used; tw=1 dyne/cm2, H=40 m,
g=9.8 m/s2, r=1025 kg/m3, 6z=0.03 m2/s, uf=0.5 cm/s. The basin area is 12×12 km with
grid size of 1×1 km. Simulations were performed by using 6, 10 and 20 layers. Numerical
calculations were carried out first with an equal layer thickness along the water depth, and
later with the grid clustering near surface and bottom layers. Velocity profiles for both cases
and the analytical solution are shown in Figure 1. For comparing numerical model results with
the analytical solution, the root mean square errors and bias are calculated and listed in Table
I. These results show that, model predictions approach the analytical solutions, as the number
of layers is increased or the layers are concentrated near the boundaries, i.e. by increasing the
resolution near the surface and bottom boundaries. The computer program is written in the
FORTRAN 77 programming language and executed by using the Scalable Power Parallel
System-2 (SP/2), which has an AIX/6000 operating system. The corresponding central process-
ing unit times (CPU) of the computer for the implicit solution are presented in Table II. The
CPU time increases only approximately 1.8 per cent for simulations when grid clustering is
used. To obtain an accuracy with root mean square error under 0.02 cm/s, either 20 equal
layers or 10 layers with grid clustering near the bottom and the surface can be used. The CPU
time for the solution with 20 equal layers is 1.5 times that of the solution with 10 clustered
layers near the bottom and the surface.

The predictions of the numerical model are then compared with the wind driven turbulent
flow of an homogeneous fluid, as shown in Figure 2. The numerical model is executed with the
two-equation k–e turbulence model. The experiment results are due to Tsanis and
Leutheusserr [21] who used a laboratory basin with a length of 2.4 m, a width of 0.72 m, and
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Figure 1. Wind driven flow with bottom friction. (a) Equal vertical layer thickness. (b) Grid clustering
near surface and bottom layers (solid line: analytical solution; symbols: model predictions where, *: 20

layers; : 10 layers; �: 6 layers).

a depth of H=0.05 m. The Reynolds Number, Rs=usHr/m was 3000 (us is the surface
velocity, H is the depth of the flow, r is the density of water and m is the dynamic viscosity).
The root mean square error is 0.08 and bias is −0.027.

4.2. Seiche motion

A particular seiche motion, the uni-nodal standing oscillation, is the next case for which the
present numerical model is verified. Wind blowing over an enclosed water body piles up water
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Table I. The root mean square errors and bias of horizontal velocity for wind
driven flow in a closed basin with linearized bottom friction.

Equal layer thickness Grid clustering

RMS Bias RMS Bias
(mm/s) (mm/s) (mm/s) (mm/s)

0.43 0.093 0.356 layers 0.0599
0.27 0.08410 layers 0.17 0.0335

20 layers 0.16 0.045 0.05 0.0084

Table II. Comparison of the CPU times (in min).

Equal layer Grid clustering
thickness

6 layers 3:15 3:18
4:5010 layers 4:55

20 layers 7:23 7:31

Figure 2. Horizontal velocity profile of the wind driven turbulent flow of an homogenous fluid where,
*: experimental results; —: numerical model results.

on one side and raises the water. If the wind suddenly dies away, then the piled up water is
released and the water level starts to oscillate. A rectangular closed water body of constant
water depth is considered. The depth of the water is sufficiently small to allow the shallow
water theory to be employed. The fluid is assumed to be ideal. The analytical solution for this
flow situation is expressed by the following equations [2]:

h=a cos(kwx) cos(swt) (36)
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u=
aCw sin(kwx) sin(swt)

h
(37)

w= −
asw(h+h) cos(kwx) sin(swt)

h
(38)

where a is the wave amplitude, kw is the wave number (2p/Lw), Lw is the wave length (CwTw),
Cw is the wave celerity (gh)0.5, h is the water depth, sw is the angular frequency (2p/Tw), x is
the distance from the left boundary.

For this test study, a closed rectangular basin is considered with a depth of h=7 m, a length
of Lb=3.4 km, and a width of Wb=1.6 km. The period of oscillation for the wave is
Tw=820 s and the wave length is Lw=6.8 km, which is twice the length of the basin. The
standing wave is introduced as the water surface elevation data at time t=0 in the form of a
half cosine wave with a maximum amplitude of 0.4 m at the left-hand closed boundary (x=0),
and the minimum on the right-hand closed boundary (x=3.4 km). The velocities in the water
are zero everywhere, i.e. the water is instantaneously at rest. At this time, the water elevation
starts to fall on the left and rise on the right, and a system of currents is set up. Horizontal
grid dimensions are 200×200 m and the total simulation time is 1640 s (t=2Tw). The water
depth is divided into seven equal layers.

At the end of the simulation time, the numerical and analytical results of the surface
elevation are almost identical as compared in Figure 3. The root mean square error in the
computations of water surface elevation is 1.2 mm and the bias is 0.08 mm. Figure 4 shows the
computed velocity vectors after 1435 s (t=7Tw/4), when the velocities are maximal and the
water surface is horizontal. At this stage of the oscillation, comparisons of the numerical
results with the analytical results show that, the root mean square error in horizontal velocity

Figure 3. The water surface elevation in a closed rectangular basin after 1640 s where, —: analytical
solution; *: numerical solution.
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Figure 4. The velocity field due to a uni-nodal standing oscillation in a closed rectangular basin after
1435 s as computed by the numerical model.

components is 0.82 mm/s and the bias is 0.64 mm/s. The root mean square error in vertical
velocity components is 0.043 mm/s and the bias is 0.032 mm/s.

4.3. Forced flushing of marinas in enclosed seas

The next test study is on the forced flushing of marinas in enclosed seas. Construction of a
marina disturbs the natural flow patterns and normally deteriorates the water quality in and
around the project site. The breakwater, the purpose of which is to provide a physical barrier
against waves, also becomes a barrier against the movement of water and sand. Water enclosed
in a marina basin is normally tranquil and has a restricted contact with the outside sea. Water
exchange takes place only through the entrance. The cross sectional area of the entrance is
often small and the exchange is low especially in areas where the tidal range is small. Water
that enters into the basin cannot freely circulate. Limited water circulation may result in poor
water quality levels in the marina. It is often necessary to apply some special design features
to enhance flushing of marinas. The use of a ‘morning-glory spillway’ like structure to pump
out water from the marina for improving the flushing performance is investigated [22]. A
physical model study was performed in the Coastal Engineering Laboratory of the Middle East
Technical University. The measured velocities in the physical model at the grid points
neighbouring the intake are used as the boundary conditions in the mathematical model. The
length scale of the model was 1/50. The length and width of the rectangular model marina
basin were 5.80 and 2.8 m respectively. The average water depth was 0.2 m. Using the length
scale of 1/50, these dimensions correspond to a prototype marina of 290×140 m, with a water
depth of 10 m. Surface water was withdrawn from the marina by installing a structure similar
to the morning-glory spillway. The structure consists of a vertically placed conical shaft
connected to a horizontal discharge pipe placed on the sea bed. The water taken from the
basin was pumped into the open sea. The discharge point was selected so that, the motion
resulting from the pumped water does not affect the circulation in the basin. Velocity
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measurements were taken with a ‘Minilab SD-12’ microscale 3-axis ultrasonic current meter.
The morning-glory shaped intake structure was placed at various locations in the basin. Two
of them, which are at the corners, are presented in this paper. The choice of the corner
locations is due to the concern for affecting the manoeuvring space of the crafts inside the
marina. The grid system used has a square mesh size of 10×10 m. The vertical eddy viscosity
is calculated by the k–e model and horizontal eddy viscosities are predicted by the sub-grid
scale turbulence model. The water depth is divided into ten layers of equal thickness. The
density of water is assumed to be constant and equal to 1025 kg/m3. At t=0, the pump is
started, so that the water begins to flow in the intake, whereas the remaining part of the water
body is assumed to be at rest and the water surface is assumed to be horizontal. The land
boundaries are taken as fixed boundaries. Velocities measured in the physical model at the grid
points neighbouring the intake are used as the boundary conditions of the intake location in
the mathematical model. Steady state conditions are reached approximately 1.5 h after the
start of pumping. The CPU time to reach the steady state by implicit solution is approximately
30 min.

The paths followed by the floats in the physical model are compared with the results
obtained from the mathematical model in Figures 5 and 6. The velocity distributions at the
surface layer as obtained from the mathematical model are also shown. The average velocities

Figure 5. Float paths and velocity distributions at the surface layer, when the morning-glory is placed on
the right end corner of the marina.
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Figure 6. Float paths and velocity distributions at the surface layer, when the morning-glory is placed on
the left end corner of the marina.

along the paths followed by the floats in both physical and mathematical models are compared
in Table III.

In Case I, the intake structure is placed on the right end corner of the marina (135×285 m).
The best agreement is obtained for the path followed by the float number 2 released at location

Table III. Average velocities along the float paths.

Float number Release location Mathematical modelPhysical model
average velocityaverage velocity(x, y) in m

(cm/s) (cm/s)

Case I Case II Case I Case II

** 4.1590×01 ** 4.04
4.512 100×0 3.64 5.27 3.66

3.88 5.045.163 3.61110×0
4.014 120×0 3.72 3.88 3.91
**5 130×0 ** ** **

1.98** **2.2470×106
0.70 **7 30×10 0.93 **

8 **2.72** 3.51130×240
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(100×0 m) with an average velocity relative error of 0.55 per cent. The highest relative
error in the average velocity is calculated as 24.4 per cent for the float number 7 which
released at location (30×10 m). For this path, the velocities predicted by the numerical
model are less than the velocities observed in the physical model. There is a dead zone
where the released float does not move through the intake, since there occurs a gyre.
Therefore, the float number 7 follows a counter clockwise elliptical route. The location of
the dead zone is almost the same for physical and numerical models.

In Case II, the intake structure is placed on the left end corner of the marina (5×
285 m). The closest agreement in the path trajectory is obtained for the float number 8,
which is released at location (130×240 m). However, the relative error in its average
velocity is the highest, 29 per cent. In the physical model, a dead zone is observed in the
left-hand side of the basin towards the middle of the y-axis. On the other hand, the dead
zone predicted by the numerical model is on the left entrance corner of the basin and it
occupies a rather restricted area.

Periodical removal of surface water from a marina by pumping through a morning-glory
type structure may be a feasible solution to enhance flushing of the basin as a remedy
against water pollution. The pumping operation should be carried out during flood tide
only to derive the greatest efficiency from such a system. The best location of the intake
for removal of water and the optimum discharge rate are two crucial issues for designing
such a scheme. The first question becomes especially important in the case of complex
basins where the problems of ‘dead regions’ are normally more significant. Such features
have traditionally been investigated in physical models. The three-dimensional numerical
model developed is shown to be capable of predicting induced circulation patterns and the
level of flushing enhancement with a very reasonable accuracy.

5. CONCLUSIONS

A comprehensive baroclinic three-dimensional numerical model of transport processes in
coastal areas is developed. The model computes the full spatial distribution of velocities of
unsteady flow induced by wind, tide or water density differences. The model predictions are
verified by using several experimental and analytical results published in the literature
[11,23,24].

The numerical solution method is a composite finite element–finite difference method.
The governing equations are solved by the Galerkin weighted residual method in the
vertical plane and by finite difference approximations in the horizontal plane. The water
depths are divided into the same number of layers following the bottom topography. Grids
can be concentrated near the surface, near the bottom layer or around any specified water
depth by grid clustering. There may occur static instabilities in the numerical scheme when
the ratio of layer thicknesses of successive nodal points is greater than 10. A higher
horizontal mesh resolution should be used in such areas that have a sudden change in the
bottom slope.
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Since a non-orthogonal grid system is used, the length of the each element may differ
from one point to another depending on the water depth. Therefore, interpolation functions
have horizontal gradients. The integrals of the functions are performed, after all the hori-
zontal gradient terms are corrected by considering the horizontal gradients of the interpo-
lating functions. In the finite difference approximations, variable horizontal mesh sizes can
be utilized. In shallow water body applications, the shoreline boundaries can be treated as
movable by taking into account the flooding and drying processes, resulting from water
level changes. The stability of the numerical scheme is assured by the implicit Crank–
Nicholson method.

The numerical model is shown to be capable of predicting the induced circulation pat-
terns and the level of flushing enhancement in a marina with reasonable accuracy. The sink
flow, which has significant velocity gradients is successfully generated. The induced circula-
tion patterns seem to be more sensitive to the horizontal exchange. The application of the
standard isotropic k–e model fails to estimate the horizontal eddy viscosity coefficients,
since the horizontal length scale is much larger than the water depth. On contrast, the
Smagorinsky sub/grid scale turbulence model, provides better agreement with the measure-
ments.

The numerical model can serve as a powerful design tool and can be implemented in a
Decision Support System. It may be used in diverse coastal applications including the
induced circulation patterns, the prediction of natural flushing rates caused by tidal motion,
wind effect, a water inflow due to longshore currents driven by breaking waves and fresh
water inflow in the case of a river marina.

APPENDIX A

If open boundary is parallel to the x-axis, then, horizontal velocities along the y-axis are
computed in the middle of the cell where the water depth is known. Similar treatment is
performed for the horizontal velocities along the x-axis, if the open boundary is parallel to
the y-axis. Finite difference formulations of the typical terms are given below.
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APPENDIX B

B.1. Finite element approximations

The length of the each element may differ from one point to another depending on the water
depth, since the non-orthogonal grid system is used. Therefore, the interpolation functions
have horizontal gradients. Since the treatment is similar for the y-direction, the horizontal
derivatives of interpolation functions are solely listed below for the x-direction:
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The Galerkin method is utilized in order to develop the element equations. The approximate
solutions, are substituted into the related equations. Then, the residuals (R) are minimized by
the Galerkin method which uses the interpolation functions as the weighting functions.
Application of the Galerkin method is shown below on some of the terms, where G0 , F0 and E0
represent the variables of concern, as:
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The time derivative terms are approximated by:
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B.2. Finite difference approximations

After the application of the Galerkin method, any derivative terms with respect to x and y,
appearing in the equations are replaced by the central finite difference expressions, by paying
attention to the possibility of unequal mesh sizes. Finite difference formulations of differential
terms are prepared for the staggered schemes.

B.2.1. Horizontal 6elocity component in the x-direction. In the computations of the velocity
component u, the finite difference formulations of differential terms are prepared for the
staggered scheme shown in Figure B1.

Figure B1. Finite difference molecule for computations of the horizontal velocity in the x-direction, u.
(Symbols represent the variables as follows: u �, 6 , all other variables *.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 307–339



L. BALAS AND E. O8 ZHAN330

The following approximations can be derived in respect to the computational molecule
illustrated in Figure B1. It should be noted that, all computations are performed at point 	i,j :�(u

(x
�

i, j

=
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+
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where 6m,j+1/2 (m= i−1, i, i+1) can be estimated by the following equation:
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where 6i−1/2,m (m= j, j+1) can be estimated as:
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Therefore, Equation (B.54) can be written as:
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The horizontal derivatives of the element length (lk) can be approximated as:
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where li−1/2,m (m= j−1, j, j+1) can be approximated as:
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B.2.2. The horizontal 6elocity component in the y-direction. In the computations of the velocity
component 6, the finite difference formulations of differential terms are prepared for the
staggered scheme shown in Figure B2. The following approximations can be derived in respect
to the computational molecule illustrated in Figure B2. It should be noted that, all computa-
tions are performed at point 
i,j :
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Figure B2. Finite difference molecule for computations of the horizontal velocity in the y-direction, 6.
Symbols represent the variables as follows: 6 , u �, all other variables *.
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where ui+1/2,m (m= j−1, j, j+1) can be approximated as:
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Therefore, Equation (B.68) can be written as:
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The horizontal derivatives of the element length (lk) can be approximated as:
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where lm,j−1/2, (m= i−1, i, i+1) can be approximated as:
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B.2.3. All the other 6ariables except the horizontal 6elocities. In the computations of the salinity
(S), temperature (T), pollutant concentration (C), kinetic energy (k) or the rate of dissipation
of kinetic energy (e), the finite difference formulations of the differential terms are prepared
for the staggered scheme shown in Figure B3.

The following approximations can be derived in respect to the computational molecule
illustrated in Figure B3. It should be noted that, all computations are performed at point � i,j :

Figure B3. Finite difference molecule for computations of all other variables except the horizontal
velocities. Symbols represent the variables as follows: 6 , u �, all other variables *.
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